
ZEON CORPORATION

С	0	N	Т	Е	N	Т	S
1. A	lkylati	on, Sily	/lation	•••••	• • • • • • • • • • • • •	••••••	3
2. R	eactio	ns und	er Lev	vis aci	d Con	ditions	6 6
3. R	eaction	ns unde	r Brons	sted ac	cid Con	ditions	s···· 9
4. R	eactio	n with	Base o	or Org	anome	etals	10
5. 0	xidatio	on/Red	luction	•••••	••••••	••••••	17
6. R	eactior	ns with	Transit	tion Me	etal Ca	talyst ·	19
7. F	Reactio	on With	Lipas	e	••••••	••••••	22
8. P	olymer	risation	າ ······	••••••	••••••	••••••	23
9. E	xtracti	ion/Cry	ystalliz	ation	••••••	••••••	24
10. O	thers	••••••	••••••	••••••	•••••	••••••	25

1. Alkylation, Silylation

1-1 O-Methylation of Pyridinol

Torisawa, Fine Chemical 2006, 35, 53

1-2 N-Alkylation under PTC

ibid

1-3 Regioselective Ethynylation

Yamaguchi, The 126th Annual Meeting of the Pharmaceutical Society of Japan (2005)

1-4 Asymmetric alkylation

Ooi, Angew Chem. int. Ed., 2008, 47, 1

1-5 Asymmetric conjugate addition

Maruoka, Org. Lett. 2009, 11, 2023

1-6 Asymmetric conjugate addition


J.A.Ellman, JACS 2009, 131, 8754

1-7 Asymmetric conjugate addition

J.A.Ellman, Chem.Sci., 2012, 3, 121

1-8 Enantioselective one-pot synthesis

Maruoka, Org. Lett. 2009, 11, 2023

1-9 Selective O-Silylation

Kamimura, J. Org. Chem. 2010, 75, 3579

1-10 Enantioselective allylation

M.Kotora, Chem. J. 2010, 16, 9442

1-11 Phase-Transfer-Catalyzed Olefin Isomerization/-Alkylation Maruoka, Adv. Synth Catal. 2010, 352,165

BnBr (1.2 equiv.)

(S)-3 (2 mol%)

base

$$CO_2$$
-t-Bu

Tol or CPME

 R^1
 CO_2 -t-Bu

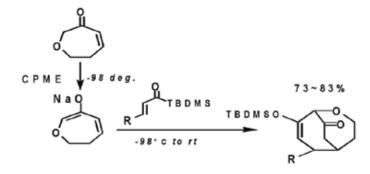
 R^1
 CO_2 -t-Bu

1-12 5-silylethynyl-1,3-dioxolan-4-one as a new prochiral template Maruoka, Chem. Commun., 2010, 46, 7593

1-13 Methylation

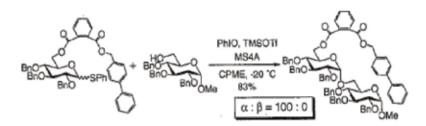
Maruoka, Tetrahedron, Lett, 2008, 49, 5461

1-14 Allylation

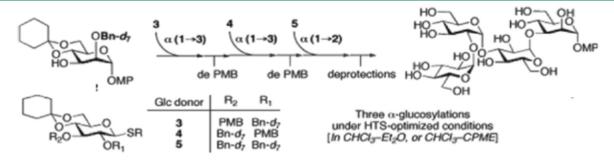

Ooi, Synlett 2009, 4, 658

2. Reactions under Lewis acid Conditions

2-1 Beckmann Rearrangement of Indanones Torisawa, Bioorganic & Medical Chem. Lett. 2007, 17, 453


2-2 [3+4] Annulation Reaction

Takeda., Org.Lett., 2004, 6, 2277


2-3 Selective glycosylation

Fukase, Tetrahedron: Asymmetry. 2005, 16, 441

2-4 Selective glycosylation

Itoh, Tetrahedron, 2008, 64, 92

2-5 Selective glycosylation

Ikeda, TetrahedronLett., 2007, 48, 7431

AcO OAc
$$AcO$$
 OAc AcO O

1a:X⇒H 2a: R=Me 1b: X=CF3 2b: R=18u

Entry	Solvent	Yield (%)	ec (%)
ı	Toluene	35	93
2	Toluene/CH ₂ Cl ₂ (2/1)	10	85
3	Toluene/BuOMe (2/1)	39	92
4	'BuOMe	57	92
5	CPME ^b	56	93
6	'Pr ₂ O	16	18
7	Et ₂ O	28	88
8	'BuOMe/CH ₃ CN (2/1)	76	88
9	'BuOMe/THF (2/1)	81	88
10	'BuOMe/DME (2/1)	73	92
11	'BuOMe/DME (4/1)	78	91
12°	'BuOMe/DME (4/1)	70	91

"The reactions were performed at 0°C for 18h in the presence of the zirconium catalyst (20 mol%).

b Cyclopentyl methyl ether.
Using Zr catalyst (10 mol%) at -10°C for 48 h.

Sulfinyl ketimine

J.A.Ellman, J.Org.Chem, 2010, 75, 6283

77-99% yield by 1H NMR

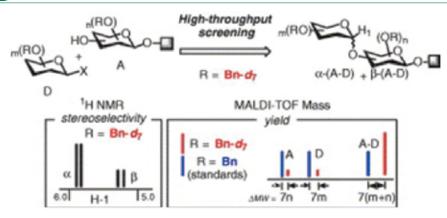
Selective glycosylation **2-**8

Komba, J.Appl. Glycosci, 2011, 58, 1

Entry	Acceptor	Donor	Condition*1	Product	mono:di;tri*2	Yield*3
1	19	4	A	27 (α only)	17:14:69	18% (12 steps)
2	20	4	A	28		, , ,
3	20	5	B	29 (α only)	24:33:43	23% (17 steps)
4	20	5	C	29	29:46:25	
5	20	5	D	29	33:55:12	
6	21	4	A	30		
7	21	5	В	31 (a. only)	37:46:17	9% (20 steps)
8	22	4	A	32		
9	22	5	В	33 (α only)	45:11:44	18% (15 steps)
10	23	4	A	34		,
11	23	5	В	35 (α only)	46:40:14	7% (18 steps)

*Coupling conditions; A: 6.0 equiv. 4, 18.0 equiv. NIS, 18.0 equiv. TfOH, DCM, -30°C, 1 day; B: 6.0 equiv. 5, 18.0 equiv. TMSOTf, CPME, -15°C, 1 day; C: 6.0 equiv. 5, 42.0 equiv. TMSOTf, CPME, -15°C, 1 day; D: 6.0 equiv. 5, 42.0 equiv. TMSOTf, CPME, -30°C, 1 day. *The ratio of monosaccharide:disaccharide:trisaccharide was calculated from the area under the peaks in the HPLC detected at 254 nm. *3Isolated overall yield of trisaccharides.

2-9 Fucosylation



Entry	Solvent	Temp (℃)	Yield ^b (%)		% de ^c
			3x	3β	
1	PhCH ₃	-40	41	50	10
2	Et ₂ O	-60	50	44	6
3	Et ₂ O	-40	66	29	39
4	Et ₂ O	-10	78	15	68
5	Et ₂ O	0	72	20	57
6	Et ₂ O	rt	73	19	59
7	PME	0	80	19	62
8	PME	-10	82	13	73
9	THF	0	53	44	9
10	CH ₂ Cl ₂	-60	18	63	-56
11	CH ₂ Cl ₂	-40	23	66	-48
12	CH ₂ Cl ₂	0	50	50	0
13	CH ₃ CN	-40	34	61	-28

^a All reactions were continued for 1-2 h.

2-10 Glycosylation

Itoh, Tetrahedron Lett, 2005, 46, 3521

b Isolated yield based on the donor.

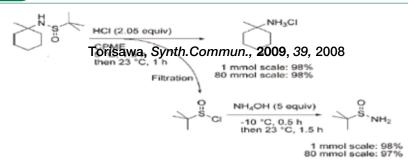
^c Diastereomeric excess (% de) = [ratio of α anomer (%)] - [ratio of β anomer (%)].

3. Reactions under Bronsted acid Conditions

Pinner reaction

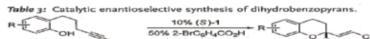
Torisawa, Synth.Commun., 2009, 39, 2008

R-CN .	4 M	4M-HCI solution, CH ₃ OH				
	solvent	R ∕OCH3				
R		solution	solvent	Yield (%)		
	3.	1,4-Dioxane	Et ₂ O	86a)		
н₃со∕	~~	CPME	СРМЕ	90 _{р)}		
Ç _{H₃}	~34°	СРМЕ	CPME	(89b)		
	34,	CPME	СРМЕ	91 ^{b)}		


a) U.S.Pat.No.: US 6806380 B2 b) Work-up of CPME process is only filtration and washing.

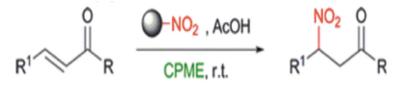
Deprotedtion of Boc-group

ibid


Amination

J.A.Ellman, J.Org.Chem., 2009, 74, 2646

3-4 **Asymmetric Cyclization**


G.C.Fu, Angew Chem. int. Ed., 2009, 48, 2225.

Entry	Substrate	ee [96]	Yield [96] ^[6]
1	OH CO2EI	88	86
2	CO ₂ Et	63	82
3	Me CO ₂ Et	84	89
4	OH CO2ET	84	79

Conjugate addition

Roberto Balliani, Green Chem., 2011, 13, 2026

4. Reaction with Base or Organometals

4-1 Claisen-Schmidt Condensation

Torisawa, Summer Symposium of the Japanese Society for Process Chemistry (2005)

Other Bases: NaH, KHMDS Other Solvents: THF, DME, Toluene, EtOH

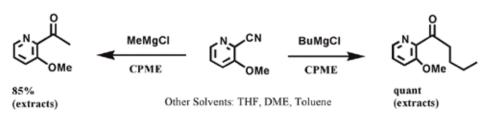
4-2 Chirality Transfer Methylation

Kawabata, Chem. Commun. 2003, 162

4-3 Chirality Transfer cyclization

Krause, SYNLETT. 2007, 1970

4-4 Selective KSA Formation


Tanabe, J.Org.Chem., 2007, 72, 8142

4-5 Symmetric aza-Morita-Baylis-Hillman Reaction

Sasai, Tetrahedron: Asymmetry 2006, 17, 578 idem. JACS., 2005, 127, 3680

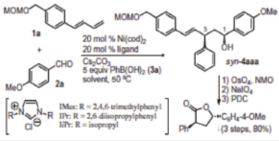
4-6 Grignard Addition Reactions

Torisawa, Summer Symposium of the Japanese Society for Process Chemistry (2005)

4-7 New Grignard Addition reactions

4-8 Vinylic addition via carbenoids

Sato, Tetrahedron, 2005, 61, 4409


4-9 Asymmetric Michael Addition

Matsuyama, The 87th Spring Meeting of Chemical Society of Japan (2007)

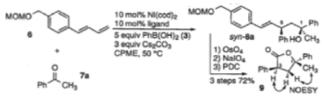
4-10 Three Componet Coupling

Sato, Tetrahedron Lett., 2008, 49, 5073.

Run	Ligand	Solvent	Cs ₂ CO ₃ (mol %)	Time (h)	Yield (%, symanti)
1	IMes-HCl	THE	40	60	43 (6:1)
2	IMes HCl	CPME	40	60	40 (>50:1)
3	IMes HCI	CPME	300	36	62 (>50:1)
4	IPr-HCl	CPME	300	27	27 (3:1)
5	IiPrHCI	CPME	300	17	50 (>50:1)
6	PPh ₃	CPME	300	15	75 (>50:1)
7*	PPh ₃	CPME	300	15	80 (>50:1)

^{*} Catalyst loading: Ni(cod)₂ (10 mol %), PPh₃ (10 mol %).

Table 2
Three-component coupling of various substrates in the presence of ArB(OH)₂ (3)*


Run	Aldehyde (2) (R2=)	Ar-B(OH)2 (3) (Ar=)	yield of syn-4 ^b (reaction time)
1	2a: 4-MeOC ₆ H ₄	3b: 4-MeOC ₆ H ₄	4aab: quant (8 h)
2	2b: Ph	3a	4aba: 80% (10 h)
3°	2c: 4-MeC ₆ H ₄	3a	4aca: 72% (12 h)
4	2d: 4-CF ₂ C ₆ H ₄	3a	4ada: 33% (12 h)
5	2d	3b	4adb: 57% (17 h)
6	2e: 2-Naphthyl	3a	4aea: 82% (13h)
7	2f: 2-Furyl	3a	4afa: 65% (16 h)
ge	2g: Me ₂ CHCH ₂	3a	4aga: 63% (1 h)
ge	2h: Me ₂ CH	3a	4aha: 86%(2h)

^{*} Reaction conditions: diene (1 equiv), aldehyde (2 equiv), Ni(cod)₂ (10 mol %), PPh₃ (10 mol %), ArB(OH)₂ (5 equiv), Cs₂CO₃ (3 equiv), CPME, 50 °C.

b In all cases, the ratio of syn-isomer to anti-isomer was >50 to 1.

^c Catalyst loading: Ni(cod)₂ (20 mol %), PPh₃ (20 mol %).

4-11) Three Componet Coupling

Run	Ligand	Time/h	Yield of syn-8a/%
1	PPh ₃	75	73
2	PPh ₂ Me	17	29
3	PCy ₃	10	40
4	P(p-tolyl) ₃	20	79
5	P(p-MeOC ₆ H ₄) ₃	9	71

*Reaction conditions: 6 (1 equiv), 7a (2 equiv), Ni(cod)2 (10 mol %), ligand (10 mol %), PhB(OH)2 (5 equiv), Cs2CO3 (3 equiv), CPME, 50 °C. bThe ratio of syn isomer to anti isomer was >50 to 1.

Run		Ketone 7			Yield of
		R1 =	R ² =	Time/h	syn-8/%
1	7b	4-MeOC ₆ H ₄	Me	15	8b: 25
2	7c	4-MeO2CC6H4	Me	13	8c: 92
3	7d	F	Me	14	8d: 85
4	7e	CF ₃	Me	13	Se: 89
5	70	CF ₃	Et	11	8f: 77
6	7g	i-Pr	Me	13	8g: 29
7	7h	t-Bu	Me	15	8h: 24
8	7i	Q π=1		12	8i: 32
9	73	K) n=2		13	8j: 66
10	7k	$\binom{n}{n}$ $n=3$		12	8k: 29

*Reaction conditions: diene 6 (1 equiv), ketone 7 (2 equiv), Ni(cod)2 (10 mol %), P(p-tolyl)₃ (10 mol %), PhB(OH)₂ (5 equiv), Cs₂CO₃ (3 equiv), CPME, 50 °C. ^bThe ratio of syn isomer to anti isomer was >50 to 1.

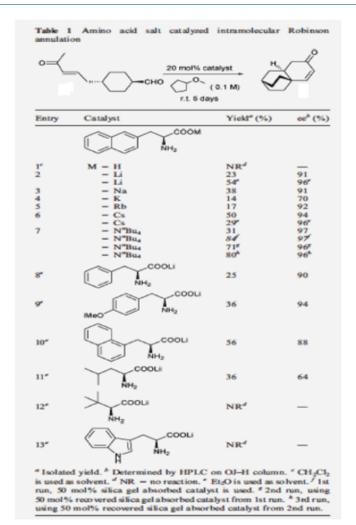
4-12 Grignard Coupling

Ohshima, Synthesis, 2008, 2659.

Ar—S*(Ni(acac) ₂ (5 mol%) 3a (5 mol%) solvent, reflux	→ Ar—R		Ph ₂ P	PPh ₂	
Entry	Ar	1	R	Solvent	Time (h)	2	Yield (%)
1	2-MeC ₆ H ₄	1b	n-Bu	Et ₂ O	5	2b	95
2	3-CF ₃ C ₆ H ₄	1c	n-Bu	Et ₂ O	5	2c	70
3	2-pyridyl	1d	n-Bu	Et ₂ O	5	2d	70
4	4-MeOC ₆ H ₄	1e	n-Bu	i-Pr ₂ O	5	2e	93
5	2-MeOC ₆ H ₄	1f	n-Bu	i-Pr ₂ O	5	2f	90
6	4-(Mc ₂ N)C ₆ H ₄	1g	n-Bu	c-C ₅ H ₉ OMc	12	2g	82
7	Ph	1a	Ph(CH ₂) ₃	Et ₂ O	5	2h	95
8	Ph	1a	c - C_6H_{11}	c-C ₅ H ₉ OMe	5	2i	97
9	2-MeC ₆ H ₄	1b	c-C ₆ H ₁₁	c-C ₅ H ₉ OMe	5	2j	65
10	3-CF ₃ C ₆ H ₄	1c	c - C_6H_{11}	c-C ₅ H ₉ OMe	5	2k	86
11	2-pyridyl	1d	c - C_6H_{11}	c-C ₅ H ₉ OMe	5	21	95
12	4-MeOC ₆ H ₄	1e	c - C_6H_{11}	c-C ₅ H ₉ OMe	12	2m	87 (93°)
13	2-MeOC ₆ H ₄	1f	c - C_6H_{11}	c-C _s H ₉ OMe	12	2n	29
14	$4-(Me_2N)C_6H_4$	1g	c - C_6H_{11}	c-C ₅ H ₉ OMe	5	20	60
15	$4-(i-Pr)C_6H_4$	1h	i-Pr	c-C ₅ H ₉ OMe	13	2p	89 ^b
16	4-MeOC ₆ H ₄	1e	i-Pr	c-C ₅ H ₉ OMe	12	2q	80°
17	4 - $(Me_2N)C_6H_4$	1g	i-Pr	c-C ₅ H ₉ OMe	13	2r	904
18	Ph	1a	t-Bu	Et ₂ O	5	2s	o

^a Performed on a 5 mmol scale.

Grignard Addition


Novartis Pharmaceuticals Corp., J. Org. Chem., 2008,73, 9016

An 88:12 mixture of isopropylated 2p and 1-propyl-4-isopropylbenzene (2p') was obtained.
 A 77:23 mixture of isopropylated 2q and 4-propylanisole (2q') was obtained.
 A 77:23 mixture of isopropylated 2r and N,N-dimethyl-4-propylaniline (2r') was obtained.

4-14 Cross-coupling with diethylzinc

4-15 Intramolecular Robinson annulation

Yamamoto, Chem. Commun., 2009, 5412

4-17 Cross-coupling with Grignard reagent

Asami, Chem. Lett. 2011, 40, 983

4-18 Functionalisation of heteroarmatic N-oxides Kondo, Org. Biomol. Chem., 2011, 9, 78

4-19 Phosphinylation

Fujita, Tetrahedron: Asymmetry, 2010, 21, 711

^aReactions were run using 1a (0.25 mmol) and the catalyst (0.0075 mmol) in the solvent (0.5 mL). ^bIsolated yields. ^cCPME = cyclopentyl

4-20 Enantioselective Protonation

$$\begin{array}{c} \text{HP(O)(OAr)}_2 \text{ (3.0 equiv)} \\ \text{Catalyst (10 mol%)} \\ \text{Ph} \\ \text{CO}_2\text{Et} \\ \text{1a} \\ \end{array} \begin{array}{c} \text{OP(O)(OAr)}_2 \\ \text{Na}_2\text{CO}_3 \text{ (1.5 equiv)} \\ \text{toluene, RT} \\ \text{2aa: Ar = Ph} \\ \text{2ba: Ar = o-MeOC}_6\text{H}_4 \\ \end{array} \begin{array}{c} \text{OH} \\ \text{Ph} \\ \text{* CO}_2\text{Et} \\ \text{3aa: Ar = Ph} \\ \text{3ba: Ar = o-MeOC}_6\text{H}_4 \\ \end{array}$$

Entry	Catalyst (mol%)	Ar	Yield of 2 [%]	ee [%] ^[a]
1 ^[b]	quinine (10)	Ph	17 ^(c)	58 (S)
2	quinine (10)	Ph	99	46 (S)
3	quinidine (10)	Ph	91	63 (R)
4	cinchonine (10)	Ph	98	22 (R)
5	cinchonidine (10)	Ph	88	19 (S)
6	Ac-quinidine (10)	Ph	97	39 (S)
7 ^(d)	quinidine (10)	Ph	93	64) (R)
8 ^[d,e]	quinidine (10)	Ph	94	70 (R)
9 ^[d,e]	quinidine (10)	o-MeOC ₆ H ₄	79	74 (R) Toluene-CPM
10 ^[d,e,f]	quinidine (10)	o-MeOC ₆ H ₄	98	92 (R)
11 ^[d,e,f]	quinidine (2)	o-MeOC ₆ H ₄	94	92 (R)
12 ^[d,c,f]	quinine (10)	o-MeOC ₆ H ₄	97	91 (S)
13 ^[d,e,fg]	quinidine (10)	o-MeOC ₆ H ₄	98	90 (R)

[a] The absolute configuration of $\bf 2$ is given in parentheses. [b] Reaction carried out without using Na₂CO₃. [c] $\bf 3aa$ (46%) was obtained. [d] Phosphite (1.3 equiv) and Na₂CO₃ (0.2 equiv) was used. [e] Cyclopentyl methyl ether was used as a solvent. If I The reaction was carried

4-21 Grignard coupling Shimada, The 2nd International Symosium on Process Chemistry(2011)

4-22 Rearrangement

Nagase, Tetrahebron, 2011, 67, 6682

4-23 Protonation

Kobayashi, JACS, 2010, 132, 7890

4-24 Grignard

Zeon Corporation, Internal data

4-25 Addition of Grignard reagent to CN-group

Zeon Corporation, Internal data

Mg +
$$O$$

CPME CPME Step A

CPME step B

 O

CPME Step B

 O

CPME Step B

Y.74%

5. Oxidation/Reduction

5-1 LiBH₄ Reduction

Zeon Corporation, Cyclopentyl Methyl Ether (CPME) technical data

5-2 LiAIH₄ Reduction

Maruoka, Angew Chem. int. Ed., 2003, 42, 5868

5-3 LiAIH₄ Reduction

Shimada, J. Org Chem., 2005, 70, 10178.

5-4 i-Bu₂AIH(DIBAL-H) Reduction Boehringer-Ingelheim Pharma., J. Org Chem. 2008, 73, 1524

5-5 MnO₂ Oxidation

Zeon Corporation, Cyclopentyl Methyl Ether (CPME) technical data

5-6 One pot process via radical reaction

Kobayashi, The 2nd International Symposium on Process Chemistry (2011)

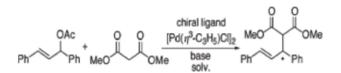
$$\frac{\text{Bu}_3\text{SnH (1.3 equiv)}}{\text{AIBN (0.2 equiv)}} \\ \frac{\text{Bu}_3\text{SnH (1.3 equiv)}}{\text{CPME, 90 °C, 40 min}} \\ \frac{\text{CPME, 90 °C, 40 min}}{\text{radical reaction}} \\ \frac{\text{R}_2\text{CuLi (2.1 equiv)}}{\text{CPME-R}_2\text{O, -78 °C, 10 min}} \\ \frac{\text{R}_2\text{Culi (2.1 equiv)}}{\text{C$$

6. Reactions with Transition Metal Catalyst

6-1 Ir-catalyzed Multi Component Coupling

Ishii, Chem. Commun., 2004, 6, 4587

6-2 Pd-catalyzed Transformation Mase, Org. Lett., 2004, 6, 458 G.A. Molander. J. Org. Chem., 2006, 71, 9198


G.A.Molander. Org. Lett. 2007, 9, 1597

G.A.Molander. J. Org. Chem., 2008, 73, 2052.

G.A.Molander. J. Org. Chem., 2008, 73, 7481

6-3 Asymmetric Allyl Coupling

Fujita, J. Org. Chem. 2004, 69, 6679

Solvents	Y(%)	ee(%)
THF	98	91
CPME	99	90

	Ar-Br + HN -	0% Pd/C (4 m	of%), dpp	f (6 mol%) R	1
	R ₂	CPME, Bu	ONa (2 e	q), reflux A N	2
Entry	Product	Yield (%)*	Entry	product	Yield (%)#
1	MeO-_N_O	70%	4	$\bigcirc\hspace{-0.7em}\stackrel{\hspace{0.2em} \sim}{\hspace{0.5em}} -\hspace{0.5em}\stackrel{\hspace{0.2em} \sim}{\hspace{0.5em}} \hspace{0.5em} \circ$	95%
28	E100C-__N_0	92%	5	₩	98%
3	N→N→	76%	6	$\bigcirc\!$	97%
a Isolat	ed yield. b Cs2CO3 was use	d as a base.			

Scheme 9

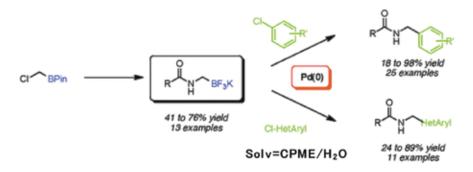
Table 8 Reuse of Pd/C

Recycle	10% Pd/C (mg)	Yield (%)2
1st	42.6	82
2nd	48.6	89
3rd	48.0	86
4th	43.5	95

a Isolated yield.

6-5 Pd-catalyzed direct C-H arylation

H.Doucet, Chem Sus Chem, 2011, 4,1


6-6 Pd-catalyzed Cross-Coupling

G.A.Molander, J.ACS, 2010, 132,17108

$$R^{1}_{R^{2}}$$
 R^{1}_{R} R^{2}_{R} $R^{1}_{R^{2}}$ $R^{1}_{R^{2}}$ R^{2}_{R} $R^{1}_{R^{2}}$ R^{2}_{R} R^{2}_{R}

6-7 Pd-catalyzed Cross-Coupling

G.A.Molander, Org. Lett., 2010, 12, 4876

entry	Ar (1)	HNR ₂ (2)	3	yield ^b
1	p-C1C ₆ H ₄ (1b)	2a	3b	83%
2	p-MeO ₂ CC ₆ H ₄ (1c)	2a	3c	76%
3	p-CF ₃ C ₆ H ₄ (1d)	2a	3d	80%
4	p-MeOC ₆ H ₄ (1e)	2a	3e	41%
5	la	piperidine (2b)	3f	92%
6	la	pyrrolidine (2e)	3g	50%
7	la	2d°	3h	60%

a All reactions were conducted in CPME (2.0 mL). The ratio of 1 (0.4 mmol):2:[PdCl₂(PMe₃)₂]:Cs₂CO₃:PhBr was 10:20:1:40:40.

6-9 Ru-catalyzed Suzuki-Miyaura Coupling

Itoh, Chem. Lett., 2010, 39, 1050

Ru(cod)(2-methylallyl)₂

$$X = I, Br$$

$$X + ArB(OH)2 = Ru(cod)(2-methylallyl)2 Ru(cod)(2-met$$

Asymmetric Hosomi-Sakurai Reactions Kobayashi, Angew. Chem. Int. Ed., 2011, 50, 11121

6-11 Pd-catalyzed Negishi Coupling

Tamao, Chem. Asian J., 2011, 6, 350

Scheme 3. Synthesis of 5-7 and EMind-oligothiophenes. 1) a) [Pd(PPh₃)₄] (2.5 mol%), toluene, reflux, 12 h; b) 1) nBuLi/hexane (1.0-1.1 equiv), THF, -80 to -20°C, 0.5 h, 2) CuCl2 (1.0-1.2 equiv), THF, -80°C to RT, 0.5-1.0 h; c) 1) nBuLi/hexane (1.1 equiv), THF or CPME, -80 °C, 0.5 h, ZnCl/THF (1.2 equiv), THF or CPME, -80 °C to RT, 0.5 h; d) 5,5'-dibromo-2,2'-bithiophene (0.5 equiv), [Pd(PPh₃)₄] (2.5 mol%), THF, reflux, 48 h; e) 2 (1.1-1.5 equiv), [Pd(PPh3)4] (5 mol%), CPME, reflux, 6-12 h.

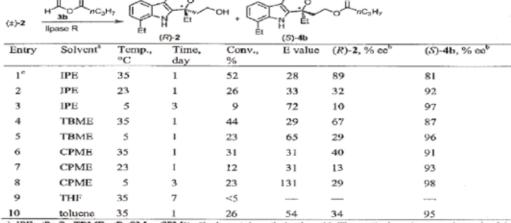
^b The isolated yield of 3. ° 2d = N-Boc-piperazine.

7. Reaction With Lipase

Selective Acylation

Fukunaga, Biotechnology Letters, 2005, 27, 383

Isopropenyl acetate (IPA) R ₁ =CH ₃ , R ₂ =CH ₃ Vinyl acetate (VAC) R ₁ -H, R ₂ =CH ₃	Vinyl butyrate (VBR) R ₁ =H, R ₂ =(CH ₂) ₂ CH ₃ Vinyl propionate (VPP) R ₁ =H, R ₂ =CH ₂ CH ₃


Racemic alcohol	Enol ester	Solvent	Enzyme activity [mmol (h · g lipase) ⁻¹]	E value
SUL	VAC	IPE	28	27
SUL.	VAC	CPME	19	31
SUL	VPP	IPE	29	26
SUL	VPP	CPME	26	45
SUL	VBR	IPE	39	101
SUL	VBR	CPME	15	00
SOL	IPA	IPE	5	4
SOL	IPA	CPME	8	3
SOL	VAC	IPE	40	3
SOL	VAC	CPME	197	3
SOL	VPP	IPE	68	6
SOL	VPP	CPME	667	8
SOL	VBR	IPE	173	11
SOL	VBR	CPME	456	13

^{*}Reaction conditions: racemic alcohol (2 mmol); enol ester (2 mmol); Me_{1,76}βCyD (43 mg)-PCL (10 mg) co-lyophilizate; organic bolvent (4 ml).

The enantio-preferred products were (R)-acyloxy sulcatol and (S)-acyloxy solketal for SUL and SOL, respectively.

7-2 Selective Acylation

Akai, Heterocycles, 2008, 76, 1537

a) IPE: iPr₂O, TBME: rBuOMe, CPME: Cyclopentyl methyl ether. b) The optical purity was determined by HPLC analysis using Daicel CHIRALCEL OD-H. c) Cited from Entry 2 in Table 1.

8. Polymerisation

8-1 Cross Coupling

Yamamoto, Polymer Journal, 2003, 35, 7, 603

$$m \text{ Br} \longrightarrow \text{Br} + n$$

$$1) \text{ Mg}$$

$$2) \text{ Ni complex} ran\text{-copoly}(p\text{-C}_6\text{H}_4/m\text{-C}_6\text{H}_4)$$

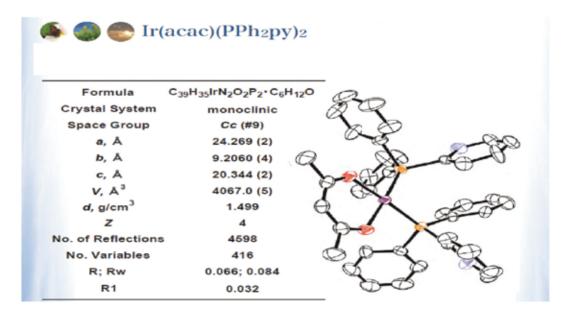
8-2 π -Conjugated polymers

Tomita, ACS National Meeting, 2011

$$= \frac{\left[\begin{array}{c} || - \cdot \text{Ti}(\text{OPr}')_2 \end{array}\right]}{\text{Solvents}} - 78 \text{ °C} \sim -50 \text{ °C}, 12 \text{ h}$$

$$= \frac{1}{4} = \frac$$

9. Extraction/Crystallization


9-1 Crystallization

Shibasaki, Angew. Chem. Int. Ed., 2009, 48, 1070

recrystallized from CH2Cl2-CPME 95%ee⇒99%ee

9-2 Crystallization

Oshiki, Syokubai, 2008, 50, 133

9-3 Removal of unreacted raw meterials

Hotta, Organic Electronics, 2011, 12, 8

10. Others

10-1 Gold-nanoparticle

Mori, Chem. Commun., 2008, 3882

$$\begin{array}{c} \text{HAuCl}_4 \cdot 4\text{H}_2\text{O} + \text{HS} - n\text{C}_{12}\text{H}_{25} \\ \xrightarrow{\text{Et}_3\text{SiH}} \text{gold nanoparticle} \end{array}$$

Table 1 Formation of AuNP with a silane reagenta

Entry	Silane	Solvent	Yield/mg	Size/nm 8.6 ± 0.65	
1	Et ₃ SiH	THF	15.1		
2	Et ₃ SiH ^b		15.7	8.4 ± 0.64	
3	HSiMe(OEt)2	THE	8.9		
4	HMe ₂ SiOSiMe ₃		18.0		
5	(HMe ₂ Si) ₂ O		ad .		
6	(HMeSiO),		- 4		
7	Et ₃ SiH	"Bu ₂ O	13.2	9.3 ± 0.91	
8	-	CPME	14.6	8.8 ± 0.58	
9		'BuOCH ₃	8.9	9.5 ± 0.84	
10		Et ₂ O			
11		1.4-Dioxane			
12		DME			
13		PhOCH ₃			

"Unless noted, the reaction was performed with dodecanethiol (0.1 mmol), HAuCl₄·4H₂O (0.1 mmol) and Et₃SiH (0.1 mmol) with 10 mL of the solvent at 25 °C. ** 10.0 mmol of Et₃SiH was employed. ** Nonspherical nanoparticles ranging in size from 6–60 nm formed. ** Insoluble precipitate formed. ** Cyclopentyl methyl ether. ** Precipitation occurred during the reaction of HAuCl₄ with thiol.

10-2 Hard formation of Peroxide

Sakakibara, Chem. Lett., 37,774 (2008)

 $\Delta BH^{\circ}_{298}(\text{C-H:ether}) = \Delta H^{\circ}_{298}(\text{ether radical}) - \Delta H^{\circ}_{298}(\text{parent ether}) + \Delta H^{\circ}_{298}(\text{H*})$

$$\Delta H_{\rm f}^{\circ}$$
 (Heat of Formation), Structure $-$ MM3 Force Field Evaluation

10-3 Toxicological Data

	m g / day	ppm
Solvents	PDE	Limit Conc
M e C N	4 . 1	4 1 0
D M A c	1 0 .8	1090
D M F	8.8	8 8 0
dioxane	3.8	3 8 0
1 ,2 - D M E	1	1 0 0
Ethyleneglycol	6.2	6 2 0
Toluene	8.9	8 9 0
THF	7.2	7 2 0
M e T H F	6.2	
СРМЕ	7.4	

10-4 Solvent selection guide

Glaxo Smith Kline plc., Green. Chem. 2011, 13, 854

Solvent	Cas number	Melting point °C	Boiling Point °C	Waste recycling, incineration, VOC, and biotreatment issues	Environm ental Impact fate and effects on the environment	Health acute and chronic effects on human health and exposure potential	Flammabi lity & Explosio n storage and handling	y/ Stability factors	Life Cycle Score Environment al Impacts to produce the solvent
t-Amyl methyl ether	994-05-8	-80	86	5	5	5	5	9	8
t-Butylmethyl ether	1634-04-4	-109	55	4	5	5	3	9	8
CPME	5614-37-9	-140	106	6	4	4	5	8	4
t-Butyl ethyl ether	637-92-3	-74	70	5	5	4	4	9	8
2-MeTHF	96-47-9	-137	78	4	5	4	3	6	4
Diethyl ether	60-29-7	-116	35	4	4	5	2	4	6
Bis(2-methoxyethyl)	111-96-6	-68	162	4	5	2	8	4	6
Dimethyl ether	115-10-6	-141	-25	3	5	7	1	4	7
1,4-Dioxane	123-91-1	12	102	3	4	4	4	5	6
Tetrahydrofuran	109-99-9	-108	65	3	5	6	3	4	4
1,2-Dimethoxyethan	110-71-4	-58	85	4	5	2	4	4	7
Diisopropyl ether	108-20-3	-86	68	4	3	8	1	1	9
				Major issues				Few issues	

The information contained herein is believed to be reliable, but no representations, guarantees or warranties of any kind
are made as to its accuracy, suitability for particular applications or results to be obtained.
Please read the Safety Data Sheet (SDS) carefully prior to handling. This product was developed for the application in this brochure. In case of other applications, please handle under your confirmation of safety for the applications, or please talk to Zeon Corporation beforehand.

ZEON CORPORATION

Specialty Chemicals Division

1-6-2 Marunouchi, Chiyoda-ku, Tokyo 100-8246 Japan Phone:+81-3-3216-0542 Fax:+81-3-3216-1303 http://www.zeon.co.jp