ZEON

Patents using Cyclopentyl methyl ether (CPME)

Ver. 2.0

ZEON CORPORATION
C 0 N T E N T S

1. Nucleophilic substitution reaction (Alkylation, Amination, Hydrogenolysis etc.) 3
2. Addition reaction to carbonyl($\mathrm{C}=\mathrm{O}$), imino($\mathrm{C}=\mathrm{NH}$) and nitrile(CN) 6
2-1. Addition of organometallic compound 6
2-2. Adition of Enolates 9
2-3. Hydrogenation 10
3. Addition reaction to alkene 11
4. Esterification, Amidation and Deprotection reaction 12
5. Transition Metal Catalytic Coupling Reaction 16
6. Borylation reaction 18
7. Silylation reaction 20
8. Indole synthesis, Fluorination and Oxidation reactions 22
9. Extraction 23
10. Crystallization 24
10-1. Creation of new crystal form 24
10-2. Optical resolution 27
10-3. Purification Isolation 30

1 Nucleophilic substitution reaction (Alkylation, Amination, Hydrogenolysis etc.)

No. 1
Organometallic reaction
$\mathrm{SP}^{3} \mathrm{C}-\mathrm{X}$ Nucleophilic substitution Lithium zincate reagent
EP 2488515 B1 (Janssen Pharmaceuticals)

ii) $\mathrm{ZnBr}_{2}, 15^{\circ} \mathrm{C}$
iii) $85^{\circ} \mathrm{C} 8 \mathrm{~h}$

No. 2
Organometallic reaction
$\mathrm{SP}^{3} \mathrm{C}-\mathrm{X}$ Nucleophilic substitution Organozinc reaction

CN 106188022 (SHANGHAI INSTITUTE OF PHARMACEUTICAL INDUSTRY)

No. 3

US 8,871,942 (Kaken Pharmaceutical)
SP ${ }^{3} \mathrm{C}-\mathrm{X}$ Nucleophilic substitution
Ring opening reaction

No. 4

WO 2018/170306 (MODERNATX, INC.)
$S P^{3} \mathrm{C}-\mathrm{X}$ Nucleophilic substitution

No. 5

No. 6

No. 7

No. 8

Nucleophilic substitution

CN 108129510 (INSTITUTE OF CHEMISTRY CHINESE ACADEMY OF SCIENCES)

No. 9

WO 2016/039691 (NANYANG TECHNOLOGICAL UNIVERSITY)
$S P^{3} \mathrm{C}-\mathrm{X}$ Nucleophilic substitution
asymmetric alkylation of Sulfonate anion

2 Addition reaction to carbonyl(C=0), imino(C=NH) and nitrile(CN)

2-1 Addition of organometallic compound

No. 10

> Organometallic reaction
> Addition reaction to carbonyl
> Reformatsky reaction

No. 11

US 8,981,097 (Rusan Pharma)

> Organometallic reaction
> Addition reaction to carbonyl Grignard reagent

No. 12

Organometallic reaction
Addition reaction to carbonyl
Grignard reaction

EP 3309142 (Zhejiang Huahai Pharmaceuticals)

No. 13

Organometallic reaction
Addition reaction to cark Grignard reaction

No. 14

```
CN 105348172 ( XINFA PHARMACEUTICAL )


\section*{No. 15}

Grignard reaction
US 10,214,554 ( Merck Sharp \& Dohme )


\section*{No. 16}

Grignard reaction
CN 109970681 ( ANHUI HAIKANG PHARMACEUTICAL )


\section*{No. 17}

CN 107759574 ( PHARMABLOCK SCIENCES )
Organometallic reaction Addition reaction to carbonyl




\section*{No. 18}

Organometallic reaction Addition reaction to carbons

CN 107903209 ( SHANGHAI TBBMED )


\section*{No. 19}

\section*{Organometallic reaction Silylation} CN 108003016 ( SHANGHAI TBBMED )



\section*{No. 20}

Organometallic reaction
Addition reaction to carbonyl
CN 106083563 ( CANGZHOU PURUI DONGFANG SCIENCE \& TECHNOLOGY )

y. \(55 \%\) (purity \(99.5 \%\) )

\section*{2-2 Adition of Enolates}

No. 21


No. 22

CN 107540623 ( HENAN UNIVERSITY )


\section*{No. 23}


2-3 Hydrogenation
No. 24
\[
\text { EP } 3357905 \text { ( Solvias AG ) }
\]

Hydrogenation


\section*{No. 25}

CN109761809 ( ANHUI HUASHENG PHARMACEUTICAL TECHNOLOGY )


\section*{No. 26}

US 9,029,528 (Ajinomoto )



\section*{No. 27}

Hydrogenation \(\mathrm{NaBH}_{4}\)
CN 109704916 ( JIANGSU YANGNONG CHEMICAL )



\section*{3 Addition reaction to alkene}

\section*{No. 28}

WO 2016/179184 ( NORTHWESTERN UNIVERSITY )
Addition reaction to \(\mathrm{SP}^{2} \mathrm{C}\)
Michael addition


\section*{No. 29}

Addition reaction to \(\mathrm{SP}^{2} \mathrm{C}\)
Simmons-Smith reaction

WO 2017/024126 (INTERNATIONAL FLAVORS \& FRAGRANCES )

\(\mathrm{ClBrCH}_{2}\) 5eq, reflux \(2 \mathrm{~h}+58^{\circ} \mathrm{C} 1.5 \mathrm{~h}\)
y. 78\%

\section*{No. 30}

\section*{CN 107759429 (HENAN NORMAL UNIVERSITY)}

Addition reaction to \(\mathrm{SP}^{2} \mathrm{C}\) Michael addition



AcSH 1eq.
\(-20^{\circ} \mathrm{C} 15 \mathrm{~min}, \mathrm{y} .99 \%(88 \mathrm{ee} \%)\)



\section*{No. 31}

\section*{Addition reaction to \(\mathrm{SP}^{2} \mathrm{C}\) Halogenation}

WO 2014/081047 ( DAIICHI SANKYO )
preparation of key intermediate for edoxaban


\section*{4 Esterification, Amidation and Deprotection reaction}

\section*{No. 32}


\section*{No. 33}

WO 2016/116335 ( Aeterna Zentaris GmbH )

\section*{Esterification \\ Lipase}

\begin{tabular}{|c|c|}
\hline CPME / THF & \begin{tabular}{l} 
N-Fmoc-doxorubicin-O-hemi \\
glutarate (\%, HPLC )
\end{tabular} \\
\hline \(1: 2\) & 84 \\
\hline \(1: 1\) & 85 \\
\hline \(2: 1\) & 88 \\
\hline \(5: 1\) & 90 \\
\hline
\end{tabular}


\section*{No. 34}

CN 105838748 ( South China University of Technology )
Esterification
Lipase


\section*{No. 35}

WO 2017/221189 ( LAURUS LABS )


\section*{No. 36}

Organometallic reaction
CN 107522661 ( PLUS SCIENCE \& TECHNOLOGY )


No. 37
Nucleophilic substitution
Amidation
WO 2018/118830 ( BRISTOL-MYERS SQUIBB )


1 : diastereomer \(=9.2: 1\)

No. 38

CN 108503571 ( DALIAN ZHENGBANG INFORMATION CONSULTING )
Amidation

reflux 14 h (azeotropic dehydration)

\section*{No. 39}

\section*{Amidation}

CN 106478471 ( SHANGHAI HANHONG TECHNOLOGY )


y. \(79 \%\) (purity \(99.1 \%, 99.8 \%\) ee.)


\section*{No. 40}

\section*{Amidation}

WO 2019/161280 ( GILEAD SCIENCES )


No. 41

Amidation
EP 3533797 (Takeda Pharmaceutical Company )


No. 42

WO 2012/006205 ( THERAVANCE INC )
Deprotection


\section*{No. 43}

Crystallization
Deprotection
WO 2013/049617 ( Theravance Biopharma )

i) CPME / heptane \(20^{\circ} \mathrm{C}\)
ii) filtration and dry
iii) 3 M HCI / CPME \(20^{\circ} \mathrm{C}\)
(process iii) y. 87.8\% purity \(99 \%\)

crude oil

No. 44

\section*{WO 2013/123222 ( Theravance Biopharma )}


\section*{5 Transition Metal Catalytic Coupling Reaction}

\section*{No. 45}

Organometallic reaction
\(\mathrm{SP}^{2} \mathrm{C}-\mathrm{X}\) Nucleophilic substitution
EP 2158193 ( Saltigo GmbH )
Kumada-Tamao-Corriu coupling


Organometallic reaction
\(S P^{3} \mathrm{C}-\mathrm{X}\) Nucleophilic substitution Lithium zincate reagent

\section*{No. 46}

> SP \({ }^{2} \mathrm{C}-\mathrm{X}\) Nucleophilic substitution
> Negishi coupling

CN 104341256 ( HARBIN INSTITUTE OF TECHNOLOGY)


\section*{No. 47}

CN 105503693 ( CHINA AGRICULTURAL UNIVERSITY ) \(\mathrm{SP}^{2} \mathrm{C}-\mathrm{X}\) Crosscoupling


No. 48

WO 2014/075648 (ZENTIVA K.S. )
\(S P^{2} \mathrm{C}-\mathrm{X}\) Nucleophilic substitution Jordan-Ullmann-Goldberg reaction




No. 49

CN 104370685 ( HARBIN INSTITUTE OF TECHNOLOGY )
\(\mathrm{SP}^{2} \mathrm{C}\)-X Nucleophilic substitution Kumada-Tamao-Corriu coupling

i) \(\mathrm{Mg} 0.1 \mathrm{~mol}, \mathrm{CPME} 0.5 \mathrm{~mol}, \mathrm{t}-\mathrm{BuMgCl} 0.1 \mathrm{mmol}\)
ii) \(\mathrm{NiCl}_{2} 1 \mathrm{mmol}, \mathrm{PPh}_{3} 1 \mathrm{mmol}\)

0.1 mol


\section*{6 Borylation reaction}

\section*{No. 50}

CN 106966871 ( DALIAN QIKAI MEDICAL TECHNOLOGY )

Organometallic reaction Grignard reagent Borylation


\section*{No. 51}

CN 105566368 ( CANGZHOU PURUI DONGFANG SCIENCE \& TECHNOLOGY )


\section*{No. 52}

CN 107892699 ( CANGZHOU PURUI DONGFANG SCIENCE \& TECHNOLOGY )


Organometallic reaction Borylation
99.4\%, y. 76\%(purity 99.4\%)

\section*{No. 53}

> Grignard reaction
> Borylation

CN 110041354 ( ZHENJIANG JUJIE NEW MATERIAL TECHNOLOGY DEVELOPMENT CENTER )
\[
\text { Br-C6F5 } \begin{aligned}
& \begin{array}{l}
\text { i) } \mathrm{CPME}, \mathrm{Mg}, 1,2-\mathrm{di}-\mathrm{BrCH}_{2} \mathrm{CH}_{2} \\
\text { ii) toluene, } \mathrm{BF}_{3} / \mathrm{Et}_{2} \mathrm{O} \\
\text { iii) } \mathrm{HCl}, \mathrm{~K}_{2} \mathrm{CO}_{3}
\end{array}
\end{aligned} \mathrm{~K}^{+} \cdot \mathrm{B}^{-} \text {(C6F5)4 }
\]

No. 54


\section*{No. 55}

Organometallic reaction
\(\mathrm{SP}^{3} \mathrm{C}\) - H Borylation
US 10010879 ( Tosoh Organic Chemical )

polystyrene-phosphane \(2 \mathrm{~mol} \%\)
CPME, \(60^{\circ} \mathrm{C} 15 \mathrm{~h}\) y. \(82 \%\)

No. 56


\section*{7 Silylation reaction}

\section*{No. 57}

\section*{SP \({ }^{3} \mathrm{C}-\mathrm{H}\) Silylation}

CN 108912160 ( QINGDAO UNIVERSITY )


No. 58

\section*{CN 108587456 ( SHENZHEN ETSUCH TECHNOLOGY )}

Silylation


No. 59
Nucleophilic substitution
Silylation
CN 107880015 ( SHANGHAI TBBMED )


No. 60

Organometallic reaction
CN 108003016 ( SHANGHAI TBBMED )
Silylation



\section*{8 Indole synthesis,Fluorination and Oxidation reactions}

\section*{No. 61}

Indole synthesis
CN 103864665 ( SUZHOU TERUI PHARMACEUTICAL )



\section*{No. 62}

CN 109665984 ( NANJING TECH UNIVERSITY )
Indole synthesis


No. 63
CN 109824472 ( NANJING TECH UNIVERSITY )

Substitution reaction
Fluorination


CN 110015983 ( EAST CHINA NORMAL UNIVERSITY )


\section*{No. 65}

\section*{Purification}

CN 104230669 ( SUZHOU FEIXIANG NEW MATERIAL RESEARCH INSTITUTE )

p:m:2,6-di=16.5\%:81.6\%:1.9\%
y. 86\%(purity 99.6\%)

No. 66

CN 104356155 ( ZHEJIANG NEO-DANKONG PHARMACEUTICAL )
Purification

i) \(\mathrm{CH}_{3} \mathrm{OH} / \mathrm{H}_{2} \mathrm{O}, \mathrm{LiOH}, 40-45^{\circ} \mathrm{C}\)
ii) CPME extration

y. \(86.5 \%\)

\section*{No. 67}
iii)aqueous phase

HClaq, CPME extraction


Purification
CN 106588837 ( ADVANBIOCHEM )

i) \(6 \mathrm{~N} \mathrm{HClaq}\). , rt 1 h
ii) extraction with CPME
iii) crystallization
y. \(90 \%\)


\section*{10 Crystallization}

\section*{10-1 Creation of new crystal form}

\section*{No. 68}

\section*{CN 104341315 ( SHANGHAI SYNCORES TECHNOLOGIES )}

Crystallization preparation of agomelatine crystal form I (brand name Valdoxan )


\section*{No. 69}

WO 2017/084644 (Zentiva K.S. )
new crystalline form of Canagliflozin


HPLC 99.52\%

Crystallization
polymorph X-C of Canagliflozin yield 70\%, HPLC 99.5\%

\section*{No. 70}

CN 104804054 ( CHARM PHARMATECH )
Crystallization
novel Sofosbuvir crystal form H7


\section*{No. 71}

CN 104829673 ( NANJING QICHANG PHARMACEUTICAL TECHNOLOGY )
Crystallization
novel crystallization method for preparing a sofosbuvir crystal form 6



50g (amorphous, purity 95.0\%)

\section*{No. 72}

WO 2012/123325 ( MEDICHEM )
Crystallization
new crystal forms of asenapine maleate


\section*{No. 73}

WO 2016/092561 (LAURUS LABS )
new polymorphic forms of ivacaftor


No. 74
\[
\begin{aligned}
& \text { WO 2018/037350 ( LAURUS LABS ) } \\
& \text { Use for new amorphous form of lumacaftor }
\end{aligned}
\]

\section*{Crystallization}


\section*{No. 75}

EP 3296299 ( Taiho Pharmaceutical )
Crystallization
Use for new crystal form of an antitumor agent


\section*{No. 76}

\section*{WO 2019/038583 ( ADAMA MAKHTESHIM )}

Use for preparation of polymorph, hydrate or solvate crystals


No. 77

CN 109988112 ( SICHUAN KELUN PHARMACEUTICAL RESEARCH INSTITUTE )
Use for crystallization of lenvatinib mesylate


\section*{10-2 Optical resolution}

\section*{No. 78}

\section*{US 2016/0016885 ( TORAY FINE CHEMICALS )}

\section*{Crystallization \\ Optical resolution}


\section*{No. 79}

US 9,994,530 ( TORAY FINE CHEMICALS )
Crystallization
a method of producing an optically active 2-methylpiperazine

\(\mathrm{Ca}(\mathrm{OH})_{2}\), water
filtrate ( (R)-2-methylpiperazine content 19.7wt\% )
i) concentration to \(30 \mathrm{wt} \%\)
ii) adding 356 g CPME
filtrate 330 g water was azeotropically distilled with CPME at \(84-87^{\circ} \mathrm{C}\)
iii) concentration and crystallization distillation 205 g CPME and cooling to \(0-5^{\circ} \mathrm{C}\)


44 g of (R)-2-methylpiperazine chemical purity \(100 \%\), optical purity 99.6\% e.e.
y. 68\%

No. 80

US 8,324,425 ( DAIICHI SANKYO )

Crystallization
Optical resolution

Use for optical resolution of a bicyclic amino acid derivatives




\begin{tabular}{|c|c|c|}
\hline solvent & Yield & ee \% \\
\hline Acetonitrile & \(8.5 \%\) & \(48.5 \%\) ee \\
\hline Ethylacetate & \(4.6 \%\) & \(79.9 \%\) ee \\
\hline Toluene & \(11.2 \%\) & \(85.0 \%\) ee \\
\hline CPME & \(13.8 \%\) & \(82.4 \% e e\) \\
\hline
\end{tabular}

No. 81
WO 2014/102591 (RHODES TECHNOLOGIES )
Epimerization
Epimerization of compound 1 with \(\mathrm{K}_{2} \mathrm{CO}_{3}\)


\section*{No. 82}

Crystallization Optical resolution

Mori, Chem. Commun., 2008, 3882

\begin{tabular}{|c|c|c|c|}
\hline solv. & yield & total impurities & (R)-Omeprazole \\
\hline CPME & \(69.7 \%\) & \(0.27 \%\) & \(0.58 \%\) \\
\hline IPE & \(94.9 \%\) & \(0.46 \%\) & \(4.19 \%\) \\
\hline MTBE & \(78.8 \%\) & \(0.25 \%\) & \(1.00 \%\) \\
\hline
\end{tabular}


Esomeprazole (S)-BINOL complex

\section*{No. 83}

EP 3219702 ( Zhejiang Huahai Pharmaceuticals )

Crystallization
Optical resolution

(1)

No. 84

CN 109996793 ( NISSAN CHEMICAL INDUSTRIES )


\(+\)

(E)

\section*{10-3 Purification Isolation}

\section*{No. 85}
```

WO 2016/142582 (FERMION OY)
PREPARATION OF CRYSTALLINE SALMETEROL

```

```

crude (purity 94 area\%)

```

```

ii) cooling to r.t. and filterig y.75\% purity 98.8 area\%

```

\section*{No. 86}


\section*{No. 87}

WO 2018/091338 ( BASF SE )
Process for the purification of 1 -(4-chlorophenyl)pyrazol-3-ol
Crystallization
A) Protonation and pH adjustment \(10 \% \mathrm{HCl}, 20-25^{\circ} \mathrm{C}, \mathrm{pH} 6\)
B) Extraction CPME \(300 \mathrm{~g}, 85^{\circ} \mathrm{C}\), phases separation
C) Crystallization, Filtration, Washing, Drying the organic phase is cooled down from \(85^{\circ} \mathrm{C}\) to \(-10^{\circ} \mathrm{C}\) over 8 h .

59.1 g (content 99.4\% , y. 86.7\%)
600.3 g (13.5\% aqueous solution, pH 13.3 ) 0.348 mol

\section*{No. 88}

i) 2-MeTHF, AcOH, DDQ, \(0^{\circ} \mathrm{C}\)
or dichloromethane, \(\mathrm{MnO} 2,20^{\circ} \mathrm{C}\)
ii) solvent exchange and recrystallization from CPME/MTBE


\section*{No. 89}

WO 2019/092546 ( OLON S.P.A. )
Crystallization

\(\xrightarrow[\text { ii) } \mathrm{Ct}_{2} \mathrm{Cl}_{2}, \mathrm{Et}_{3} \mathrm{~N}, \text { clodronic acid, } 0^{\circ} \mathrm{C}, 1 \mathrm{~h}]{ }\)
iii) \(\mathrm{CPME}, 0^{\circ} \mathrm{C} 1 \mathrm{~h}\), filtration



No. 90

\section*{Crystallization}

WO 2019/200109 ( ARBUTUS BIOPHARMA )



\section*{ZEON}

\section*{ZEON CORPORATION}

\section*{Specialty Chemicals Division}

1-6-2 Marunouchi, Chiyoda-ku, Tokyo 100-8246 Japan
Phone:+81-3-3216-0542 Fax:+81-3-3216-1303
https://www.zeon.co.jp

The information contained herein is believed to be reliable, but no representations, guarantees or warranties of any kind are made as to its accuracy, suitability for particular applications or results to be obtained.

Please read the Safety Data Sheet (SDS) carefully prior to handling.
This product was developed for the application in this brochure. In case of other applications, please handle under your confirmation of safety for the applications, or please talk to Zeon Corporation beforehand.```

